
$\qquad$

Feb 19-8:47 AM

$$
\begin{aligned}
& f(x)=\sqrt[3]{x}(x+4) \quad \begin{array}{l}
f(x) \\
\text { has a domain } \\
\text { Defined everywhere } \\
x \text { - Int. } \rightarrow y=0 \rightarrow f(x)=0 \rightarrow \sqrt[3]{x}(x+4)=0 \\
(0,0),(-4,0) \\
Y-\text { Int } \rightarrow x=0 \rightarrow x=-4
\end{array} \\
& (0,0) \rightarrow \sqrt[3]{0}(0+4)=0 \\
& f^{\prime}(x)=x^{1 / 3}(x+4) \quad \sqrt[3]{f(x)}=x^{4 / 3}+4 x^{1 / 3} \\
& f^{\prime}(x)=\frac{4}{3} x^{1 / 3}+\frac{4}{3} x^{-2 / 3} \\
& f^{\prime}(x)=\frac{4}{3} x^{-2 / 3}(x+1) \\
& f^{\prime \prime}(x)=\frac{4}{9} x^{-2 / 3}-\frac{8}{9} x^{-5 / 3} \\
& f^{\prime}(x)=0 \rightarrow x=-1 \\
& f^{\prime \prime}(x)=\frac{4}{9} x^{-5 / 3}(x-2)
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{4}{3} x^{-2 / 3}(x+1) \quad f^{\prime \prime}(x)=\frac{4}{9} x^{-5 / 3}(x-2)
$$

$$
f^{\prime}(x)=\frac{4(x+1)}{3 \sqrt[3]{x^{2}}} \quad f^{\prime \prime}(x)=\frac{4(x-2)}{9 x \sqrt[3]{x^{2}}}
$$

$$
f(-1)=\sqrt[3]{-1}(-1+4)=-1(3)=-3 \quad y^{f(2)=\sqrt[3]{2}(2+4)}=6 \sqrt[3]{2}
$$

Nov 6-10:33 AM

$$
\begin{aligned}
& f^{\prime}(x)=0 \rightarrow x=0 \quad x=-\frac{4}{3} \quad f^{\prime \prime}(x)=0 \rightarrow-3 x^{2}+8 x+8=0 \\
& f^{\prime}(x) \text { undefined } \rightarrow x=-1 \quad \begin{array}{l}
a=3, b=8, c=8 \\
x=-b \pm \sqrt{b^{2}-4 a c}
\end{array} \\
& \text { 中 } \left.4 y=3 x^{2}+8 x+8\right\rangle 0 x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \rightarrow \begin{array}{c}
\text { Parabola, open } \\
\text { upward }
\end{array}=\frac{-8 \pm \sqrt{-32}}{6} \\
& \text { No real Sown. } \\
& f^{\prime \prime}(x)>0 \text {, is undefined at } x=-1 \text {. }
\end{aligned}
$$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Nov 6-10:55 AM


$$
x>0, \quad y>0
$$

$$
x y=100
$$

whose sum is minimum. $y=\frac{100}{x}$

$$
\underbrace{x+y} \text { is } \mathrm{Min} \text {. }
$$

$$
\left.\begin{array}{ll}
f(x)=x+100 x^{-1} & \rightarrow f^{\prime}(x)=0 \\
1-\frac{100}{x^{2}}=0 \\
f^{\prime}(x)=1-100 x^{-2} & \frac{x^{2}-100}{x^{2}}=0
\end{array}\right) \left\lvert\, \begin{aligned}
& x= \pm 10 \\
& x=10
\end{aligned}\right.
$$

$$
f^{\prime \prime}(x)=200 x^{-3}=\frac{200}{x^{3}}>0 \rightarrow C \cdot U
$$

$$
x=10 \quad-\downarrow y=\frac{100}{x}=10
$$

$$
x y=100
$$

$$
\begin{aligned}
& (10, \\
& \text { Min. }
\end{aligned}
$$

$$
x+y \text { is minimum. }
$$

A farmer has 100 m of fencing and he wishes to have a rectangular enclosed shape using fence with largest area Posited find the dimensions. $2 L+2 W=100$
$L+W=50$

maximize LW $L(50-L)$
$\begin{array}{lll}A(L)=50 L-L^{2} & \rightarrow 50-2 L=0 \\ A^{\prime}(L)=50-2 L & \text { Max. Pt. } \\ A^{\prime \prime}(L)=-2<0 & C D & \omega=25\end{array}$
Dimensions are 25 m by 25 m .



Nov 6-11:19 AM


Explore First \& Second derivative Test in call. 1.

